منابع مشابه
Semi-supervised facial landmark annotation
Landmark annotation for training images is essential for many learning tasks in computer vision, such as object detection, tracking, and alignment. Image annotation is typically conducted manually, which is both labor-intensive and error-prone. To improve this process, this paper proposes a new approach to estimating the locations of a set of landmarks for a large image ensemble using manually ...
متن کاملImproving Landmark Localization with Semi-Supervised Learning
We present two techniques to improve landmark localization in images from partially annotated datasets. Our primary goal is to leverage the common situation where precise landmark locations are only provided for a small data subset, but where class labels for classification or regression tasks related to the landmarks are more abundantly available. First, we propose the framework of sequential ...
متن کاملSemi-Supervised Facial Animation Retargeting
This paper presents a system for facial animation retargeting that allows learning a high-quality mapping between motion capture data and arbitrary target characters. We address one of the main challenges of existing example-based retargeting methods, the need for a large number of accurate training examples to define the correspondence between source and target expression spaces. We show that ...
متن کاملContinuous Supervised Descent Method for Facial Landmark Localisation
Recent methods for facial landmark location perform well on close-to-frontal faces but have problems in generalising to large head rotations. In order to address this issue we propose a second order linear regression method that is both compact and robust against strong rotations. We provide a closed form solution, making the method fast to train. We test the method’s performance on two challen...
متن کاملSemi-supervised kernel density estimation for video annotation
Insufficiency of labeled training data is a major obstacle for automatic video annotation. Semi-supervised learning is an effective approach to this problem by leveraging a large amount of unlabeled data. However, existing semi-supervised learning algorithms have not demonstrated promising results in largescale video annotation due to several difficulties, such as large variation of video conte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Vision and Image Understanding
سال: 2012
ISSN: 1077-3142
DOI: 10.1016/j.cviu.2012.03.008