Semi-supervised facial landmark annotation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised facial landmark annotation

Landmark annotation for training images is essential for many learning tasks in computer vision, such as object detection, tracking, and alignment. Image annotation is typically conducted manually, which is both labor-intensive and error-prone. To improve this process, this paper proposes a new approach to estimating the locations of a set of landmarks for a large image ensemble using manually ...

متن کامل

Improving Landmark Localization with Semi-Supervised Learning

We present two techniques to improve landmark localization in images from partially annotated datasets. Our primary goal is to leverage the common situation where precise landmark locations are only provided for a small data subset, but where class labels for classification or regression tasks related to the landmarks are more abundantly available. First, we propose the framework of sequential ...

متن کامل

Semi-Supervised Facial Animation Retargeting

This paper presents a system for facial animation retargeting that allows learning a high-quality mapping between motion capture data and arbitrary target characters. We address one of the main challenges of existing example-based retargeting methods, the need for a large number of accurate training examples to define the correspondence between source and target expression spaces. We show that ...

متن کامل

Continuous Supervised Descent Method for Facial Landmark Localisation

Recent methods for facial landmark location perform well on close-to-frontal faces but have problems in generalising to large head rotations. In order to address this issue we propose a second order linear regression method that is both compact and robust against strong rotations. We provide a closed form solution, making the method fast to train. We test the method’s performance on two challen...

متن کامل

Semi-supervised kernel density estimation for video annotation

Insufficiency of labeled training data is a major obstacle for automatic video annotation. Semi-supervised learning is an effective approach to this problem by leveraging a large amount of unlabeled data. However, existing semi-supervised learning algorithms have not demonstrated promising results in largescale video annotation due to several difficulties, such as large variation of video conte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Vision and Image Understanding

سال: 2012

ISSN: 1077-3142

DOI: 10.1016/j.cviu.2012.03.008